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Abstract: Optical coherence tomography (OCT) is based on coherence detection of 
interferometric signals and hence inevitably suffers from speckle noise. To remove speckle 
noise in OCT images, wavelet domain thresholding has demonstrated significant advantages 
in suppressing noise magnitude while preserving image sharpness. However, speckle noise in 
OCT images has different characteristics in different spatial scales, which has not been 
considered in previous applications of wavelet domain thresholding. In this study, we 
demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the 
difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, 
fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our 
results demonstrate that NAWT outperforms conventional wavelet thresholding. 
© 2017 Optical Society of America 
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1. Introduction 

Optical coherence tomography (OCT) is a high-speed, high resolution, three-dimensional 
imaging technique based on low coherence light interferometry [1]. OCT has various 
applications in biomedicine, such as assisting clinical diagnosis in ophthalmology or guiding 
interventional procedures in cardiology [2, 3]. OCT, like other coherence imaging modalities, 
inevitably suffers from random noises particularly the multiplicative speckle noise [4–6]. 
Speckle noise in OCT image randomly modulates the magnitude of OCT signal and obscures 
subtle image features, resulting in compromised effectiveness in its clinical applications [7, 
8]. Various hardware and software based approaches have been developed to remove speckle 
noise. Hardware compounding for speckle noise reduction, such as spatial compounding and 
spectral compounding, may achieve higher signal to noise ratio (SNR) of OCT images, while 
compromise system cost, spatial resolution, and imaging speed [9–11]. On the other hand, 
post-processing algorithms have also been developed to reduce speckle noise in OCT images 
[12, 13]. Since speckle noise is inherently multiplicative rather than additive, conventional 
linear filtering in spatial or frequency domain is suboptimal, producing significant blurring 
and reducing image contrast [14]. Wavelet thresholding methods that are nonlinear have been 
used for speckle noise removal in various imaging modalities including ultrasound imaging, 
synthetic aperture imaging and OCT [15–17]. Wavelet thresholding algorithms have 
demonstrated excellent capability in reducing speckle noise and preserving image sharpness 
[18, 19]. The underlying principle of wavelet thresholding is that the magnitude of wavelet 
coefficients can be used as an oracle to determine if a coefficient is noise or signal. A wavelet 
coefficient with larger amplitude is more likely to carry important information while a 
wavelet coefficient with smaller amplitude is more likely to be noise. 

In previous implementation of wavelet domain thresholding for OCT image noise 
reduction, an adaptive threshold was determined for each wavelet sub-band using an 
estimated signal variance for the specific sub-band and the same magnitude of noise variance 
for all sub-bands, assuming the noise level is the same in different wavelet sub-bands. 
However, we have demonstrated in our previous study that the de-correlation of OCT signals 
with fully developed speckle could be modeled as a Gaussian function, suggesting a Gaussian 
power spectral density for speckle noise [20]. Therefore, the speckle pattern in OCT image 
has different magnitudes at different spatial scales or in different wavelet sub-bands. On the 
other hand, the characteristics of speckle noise are largely determined by the imaging system 
rather than the sample. Therefore, it is possible to extract the characteristics of speckle noise 
in a structureless OCT image obtained from a homogeneous scattering sample and 
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subsequently use these characteristics to remove speckle noise in OCT images obtained from 
other samples. 

To achieve better performance in speckle noise removal, here we study a novel algorithm 
for OCT speckle noise removal. In our noise adaptive wavelet thresholding (NAWT) strategy, 
we first acquired and analyzed an OCT image of a homogeneous scattering sample, quantified 
the noise variance (σw

2) in individual wavelet sub-band, and used σw
2 to determine the 

optimal threshold for individual sub-band. The algorithm is simple, fast, effective and is 
closely related to the physical origin of speckle noise in OCT image. Our results clearly 
demonstrated the advantage of the NAWT algorithm compared to conventional wavelet 
domain thresholding and linear filtering. 

2. Principle 

In conventional wavelet thresholding method, spatial domain image is first transformed to 
wavelet domain (Fig. 1). Afterwards, a data driven threshold (T) is determined using Eq. (1) 
for each sub-band of detail coefficients (H1, V1, D1, H2, V2, D2, H3, V3, D3, …), where Hk 
indicates detail coefficients in horizontal direction at kth wavelet decomposition level; Vk 
indicates detail coefficients in vertical direction at kth wavelet decomposition level, and Dk 
indicates detail coefficients in diagonal direction at kth wavelet decomposition level. In Eq. 
(1), σ2 indicates the noise variance and σx indicates the standard derivation of noise-free 
signal. Using the data-driven thresholding, Eq. (2) a.k.a. soft thresholding is applied to each 
wavelet coefficient S. Spatial domain image with reduced speckle noise is then reconstructed 
through inverse wavelet transform. Noise variance (σ2) used in Eq. (1) is estimated using the 
detail subband H1 by the robust median estimator as shown in Eq. (3). The standard 
derivation of the noise free signal in (σx) each wavelet sub-band is estimated using Eq. (4), 
where σs

2 is the variance of the measured wavelet coefficients. The close form threshold 
calculated in Eq. (1) leads to optimal noise reduction, given the wavelet coefficients of OCT 
image following a generalized Gaussian distribution (GGD). Equations (1)–(4) summarize the 
procedure of conventional adaptive wavelet thresholding for image denoising, as descried by 
S. G. Change et al in [18]. However, the assumption that the noise variance (σ2) is the same 
across all the sub-bands in wavelet domain is not valid for OCT signal, because the speckle in 
OCT signal has different characteristics in different spatial scales. Therefore, we propose a 
noise adaptive wavelet thresholding (NAWT) algorithm that takes different characteristics of 
speckle noise at different spatial scale to achieve more effective noise reduction. 
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Fig. 1. 2D wavelet decomposition of an image. 

The major difference between our NAWT algorithm and conventional wavelet domain 
thresholding is that NAWT uses different noise variance to calculate the threshold for each 
sub-band. Specifically, we use Eq. (5) to estimate the threshold, where σw

2 indicate the noise 
variance for the sub-band W (W will be all different sub-bands: H1, V1, D1, H2, V2, D2, H3, 
V3, D3, …). σw

2 for each sub-band is estimated using an image obtained from a structureless 
sample with homogeneous optical properties. The image is modulated by fully developed 
speckle. Wavelet domain speckle statistics extracted from the structureless sample can be 
applied to other images, as the speckle in OCT image is dependent primarily on the 
characteristics of the imaging system rather than the sample. In other words, our NAWT 
algorithm applies the noise variance at different sub-band of wavelet coefficients as a prior 
for subsequent noise reduction. 

 ( )
2
W

N X
X

T
σσ
σ

=  (5) 

The reference image obtained from a uniform scattering sample allows the speckle noises 
characteristics to be characterized, because the magnitude variation in such a reference image 
can be attributed to random noise. On the other hand, it is impossible to assess speckle noise 
characteristics using an OCT image obtained from a spatially heterogeneous sample. In such 
an image, the magnitude of OCT image varies not only due to random noise, but also due to 
deterministic structural features of the sample. 

The flow-chart for the NAWT algorithm is shown in Fig. 2. Briefly, we calculate σw
2 for 

each subband (H1, V1, D1, H2, V2, D2, H3, V3, D3, …) from the structureless reference 
image (Rxy) that is obtained from the homogeneous scattering sample. Afterwards, we use the 
image to be denoised (Sxy) to estimate the signal variance (Eq. (4)). The threshold for each 
sub-band is thus estimated using Eq. (5). Notably, Rxy and Sxy are normalized by their mean 
signal intensities respectively. Every wavelet coefficient (S) in a detail sub-band is then 
thresholded using Eq. (2). Spatial domain image is then reconstructed via inverse wavelet 
transform. The algorithm is implemented in Matlab 2016 on a personal computer (intel i72.8 
GHz CPU, 8GB memory). The time to process a 512x2014 image is approximately 0.2s. 
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Fig. 2. Signal processing flow chart for the optimized adaptive wavelet thresholding algorithm. 

3. OCT imaging system 

We used a spectral domain OCT (SD OCT) system for imaging experiments. Details about 
this system can be found in our previous publications [21, 22]. The SD-OCT system has a 
superluminescent diode (SLD1325 Thorlabs, 1.3μm central wavelength and 100nm 
bandwidth, power smaller than 10mW at the sample) as the broadband light source. The 
output of the SLD illuminates the reference and sample arm of a fiber-optic Michelson 
interferometer through a fiber-optic coupler. A lens is used in the sample arm to focus the 
probing beam and collect photons backscattered from the sample. Light returned from the 
sample and the reference mirror interferes and is detected by a CMOS InGaAs camera 
(SUI1024LDH2, Goodrich). A frame grabber (PCIe-1433, National Instrument) streams the 
signal from the camera to the host computer (Dell Precision T7600) where the OCT signal is 
processed in real-time using GPU. 

4. Results 

We first assessed the characteristics of speckle noise of OCT image in wavelet domain. In 
order to do this, we imaged a homogeneous scattering phantom. The scattering phantom was 
made by curing Polydimethylsiloxane (PDMS)/titanium dioxide (TiO2) mixture. We acquired 
four structureless images (one of the images is shown in Fig. 3) from the same scattering 
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phantom using difference elevation planes (Bscan 1, Bscan 2, Bscan 3 and Bscan 4) with 
31.4μm interval. To analyze OCT speckle statistics, we normalized these images (linear scale) 
using their respective mean values, and calculated the probability density of signal 
magnitudes (for signals from 0.8mm to 1.15mm in depth), as shown in Fig. 4 (solid curves). 
In Fig. 4, we also plot the probability density function (PDF) of Rayleigh distribution with a 

mean of 1 (P(s) = 
2

2 22

s s
exp

σ σ
 

− 
 

 where σ  = 
2

π
), as the dashed curve. Clearly, images 

obtained from different elevation planes followed the same Rayleigh distribution, although 
they had different sub-resolution characteristics. This is consistent with our previous 
discussion that the speckle statistics of OCT image is determined largely by the imaging 
system rather than the sample properties, suggesting speckle statistics characterized using a 
reference image can be applied as a prior for subsequent noise reduction. 

 

Fig. 3. OCT Bscan of the scattering phantom. Scale bars indicate 200 µm. 

P
(s
)

 

Fig. 4. Probability distribution of OCT signal magnitude (solid curves), in comparison with the 
PDF of Rayleigh distribution (dashed). 

To demonstrate that the magnitude of speckle noise varies significantly between different 
wavelet sub-bands, we transformed one of the Bscan images (linear scale, normalized to its 
maximum value) obtained from the scattering phantom through into wavelet domain. A four-
level wavelet transformation was performed using a sym4 wavelet base. For images obtained 
from a homogeneous scattering sample (Fig. 3), the variation of signal is simply due to noise. 
We calculated the variance of wavelet coefficients in horizontal (H), vertical (V) and diagonal 
(D) directions in four different decomposition levels (Fig. 5). Clearly, the magnitudes of noise 
quantified by wavelet coefficient variance are significantly different in different sub-bands. 
On the other hand, threshold for wavelet domain de-noising has been conventionally 
determined using Eq. (1), based on the assumption that noise variance (σ2) remains constant 
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across different wavelet sub-bands. However, Fig. 5 shows large difference for noise 
magnitude in different sub-bands, and soft-thresholding based on Eq. (1) is hence sub-
optimal. 

 

Fig. 5. Variance of wavelet coefficients for Bscan image obtained from the homogeneous 
scattering sample, in H, V, and D directions at four decomposition levels. Clearly, the 
magnitudes of noise quantified by wavelet coefficient variance are different in different sub-
bands. 

 

Fig. 6. Variance of wavelet coefficients for Bscan image obtained from the homogeneous 
scattering sample in four different elevation planes (Bscan 1, Bscan 2, Bscan 3, and Bscan 4), 
in H, V, and D directions at four decomposition levels. 
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To further validate that speckle statistics characterized using a reference image can be 
applied as a prior for subsequent noise reduction, we compared the inter-image difference for 
noise variance. Images (linear, normalized) obtained from the homogeneous scattering 
phantom is used to generate results shown in Fig. 6. For the same wavelet sub-band (H, V or 
D direction, level 1, 2, 3, or 4), the difference in noise variance between different images 
(Bscan1, Bscan 2, Bscan 3, and Bscan 4) is much smaller, compared to the difference 
between different wavelet sub-bands for the same image. 

 

Fig. 7. (a) raw OCT image of Sample 1 (without any post processing); (b) enlarger region of 
interest (ROI) enclosed by the rectangle in Fig. 7(a); (c) OCT image of Sample 1 processed by 
our NAWT algorithm; (d) enlarger ROI enclosed by the rectangle in Fig. 7(c); (e) OCT image 
of Sample 1 processed by conventional wavelet domain thresholding; (f) enlarger ROI 
enclosed by the rectangle in Fig. 7(e); (g) OCT image of Sample 1 processed by Gaussian 
filtering; (h) enlarger ROI enclosed by the rectangle in Fig. 7(g). Scale bars in Fig. 7(a) 
indicate 500 µm. 

To demonstrate the efficacy of our algorithm, we applied our NAWT algorithm on a 
sample (Sample 1) made by attaching three layers of tapes on top of the homogeneous 
scattering phantom. The sample had well developed speckle pattern and had easily 
discernable layer structure, and hence was ideal for the validation of our NAWT algorithm. 
OCT image without any post-processing is shown in Fig. 7(a). The area within the rectangle 
is enlarged in Fig. 7(b) to provide better visualization of image details. The grainy appearance 
of the image is due to speckle noise. To perform speckle noise reduction using our NAWT 
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algorithm, we used the noise variance obtained from the homogeneous sample shown in Fig. 
3 to generate the noise data driven adaptive threshold using Eq. (5). OCT image was then 
denoised following the procedures shown in Fig. 2. The resultant image is shown in Fig. 7 (c) 
and a region of interest is enlarged in Fig. 7(d). Clearly, Fig. 7(c) and 7(d) show reduced 
noise compared to Fig. 7(a) and 7(b). In addition, the boundaries remain clear in Fig. 7(c) and 
7(d). To demonstrate the advantage of our NAWT algorithm, we also processed Fig. 7(a) 
using conventional wavelet domain thresholding algorithm, and show the result in Fig. 7(e) 
and 7(f). The image texture remains grainy after denoise, compared to the result obtained 
from NAWT processing. We also performed spatial domain linear filtering using a Gaussian 
kernel (25 pixels by 25 pixels with a standard deviation σ equal to 1.5 pixels: h(i,j) = exp [-(i2 
+ j2)/2σ2]) and show the result in Fig. 7(g) and 7(h). Gaussian filter effectively removed 
speckle noise, but reduced image contrast and blurred small features in the image. 

To better illustrate the effectiveness of our NAWT algorithm in speckle noise reduction, 
we selected Ascans at the same lateral location from OCT images processed with different 
algorithms, and show the data in Fig. 8. OCT data without any enhancement (red curve) show 
random fluctuation due to the existence of speckle noise. The green curve that was obtained 
by conventional wavelet thresholding shows reduced noise variation. The noise is further 
reduced by processing the image with NAWT (blue curve), suggesting its superior 
performance for speckle noise suppression compared to conventional wavelet domain 
thresholding. The Ascan processed by the Gaussian filter (black curve) shows broadened 
signal peaks. This is consistent with the visual observation on Fig. 7(e) and 7(g) where 
Gaussian filtering blurs small structural features and reduces the contrast of the image. 
Particularly, Gaussian filtering reduces random fluctuation of the signal but results in 
artificially elevated the noise floor (depth >0.3mm), because Gaussian filter is linear and is 
not optimized for multiplicative speckle noise. 

 

Fig. 8. Ascans at the same lateral location from OCT images processed with different 
algorithms. 

We also applied our NAWT algorithm to OCT images obtained from an IR viewing card 
(Sample 2). OCT images without and with NAWT processing are shown in Fig. 9(a) and 9(b), 
respectively. Clearly, NAWT algorithm significantly reduced the grainy appearance of the 
image due to speckle noise. In addition, high spatial frequency features in the image such as 
the upper and lower boundaries of the plastic film are not blurred. We also acquired OCT 
image from human fingertip (Sample 3) (Fig. 9(c), original). The image processed by NAWT 
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is shown in Fig. 9(d) where the visibility of the epidermis-dermis junction is significantly 
enhanced. 

 

Fig. 9. (a) Original IR card image (Sample 2), (b) IR card image processed using NAWT; (c) 
fingertip image (Sample 3), (d) fingertip image processed using NAWT. Scale bars indicates 
500 µm. E: epidermis; D dermis; arrows in Fig. 9(c) indicate sweat duct. 

To quantitatively assess the effectiveness of different speckle removal algorithms, we 
calculated the SNR of the OCT images (Eq. (6) where μI indicates the mean of the OCT 
image and σI

2 indicates noise variance of the OCT image) [17,24]. Notably, the noise variance 
for SNR calculation was obtained using OCT data within the depth range from 1mm-1.5mm. 
In addition, we used the parameter β (Eq. (7)) to assess the capability of a noise removal 
algorithm to preserve the structural feature of an image [23]. In Eq. (7), ID indicates the 
denoised image; I0 indicates the original image; μD indicates the mean signal value of the 
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denoised image; μ0 indicates the mean signal value of the original image; 

( ) ( ) ( )1 2 1 2
,

Γ , , ,
i j

I I I i j I i j=     where i and j indicate indices of pixel in 2D images. The 

parameter β essentially is a correlation coefficient that quantifies how well the denoised 
image preserves morphological features of the original image. The performance of speckle 
reduction algorithms (WT: conventional wavelet domain thresholding; NAWT: noise 
adaptive wavelet thresholding; GF: Gaussian filtering) is evaluated using OCT images 
obtained from Sample 1 (Fig. 7), Sample 2 (Fig. 9(a) and 9(b)), and Sample 3 (Fig. 9(c) and 
9(d)). As shown in Table 1, our NAWT algorithm provides the most significant SNR 
improvement (3-8 dB) compared to other methods. On the other hand, NAWT has 
comparable effectiveness in preserving image features (β value) as compared with 
conventional wavelet domain thresholding, while outperforms Gaussian filtering. In Table 1, 
values corresponding to the best imaging performance are highlighted in bold. 
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Table 1. Performance of different noise reduction algorithms. 

Parameters Methods Sample 1 Sample 2 Sample 3 

SNR (dB) 

Raw 17.13 11.42 13.56 
WT 23.17 13.24 17.99 

NAWT 29.04 14.56 20.59 
GF 25.04 14.07 18.99 

β 
WT 0.96 0.96 0.94 

NAWT 0.97 0.94 0.93 
GF 0.92 0.92 0.90 

 

 

Fig. 10. SNR performance of Gaussian filtering and NAWT. 
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5. Conclusion and discussion 

We have proposed and validated a novel algorithm to remove the speckle noise in OCT 
images. Our noise adaptive wavelet thresholding (NAWT) algorithm utilized the 
characteristics of speckle noise in wavelet domain to adaptively remove speckle noise while 
preserving structure features in OCT image. Our results demonstrated that NAWT led to 
improved visual appearance of OCT image. Moreover, we quantitatively demonstrated the 
superior performance of NAWT in noise removal by SNR and in preserving structural 
features by the quantity β, compared to conventional wavelet domain thresholding and 
Gaussian filtering. 

We believe the application of the NAWT algorithm is not limited to OCT image. The 
effectiveness our algorithm derives from the fact that the speckle statistics is largely 
determined by the imaging system rather than the sample characteristics. This is true for most 
imaging/sensing technologies based on coherence detection of signal. Therefore, we expect 
the NAWT to be a generic algorithm for speckle noise removal in various imaging/sensing 
technologies, such as ultrasound imaging, synthetic aperture imaging, Lidar, etc. As long as 
the assumption of fully developed speckle is approximately satisfied, our algorithm can 
significantly improve the image quality through speckle noise suppression. Notably, as shown 
in Fig. 6, there is difference in noise variance between images obtained from different 
elevation planes of the same homogeneous sample, because of the stochastic nature of speckle 
noise. The difference in noise characteristics is even larger for different heterogeneous 
samples. However, for OCT images obtained from turbid media, such as most biological 
tissues, the expected value of OCT signal (magnitude) varies significantly only when the 
refractive index changes abruptly. Therefore, our NAWT method can effectively remove 
speckle noise for most pixels in OCT images obtained from turbid media. 

The NAWT algorithm does not require massive computational power, and it takes 
approximately 0.2s to process a 512x1024 image using CPU in Matlab environment. The 
main steps of NAWT comprise wavelet decomposition, soft thresholding, and wavelet 
reconstruction. All these steps can be parallelized using graphic processing units (GPU). 
Therefore, the NAWT algorithm can be implemented in GPU for real-time speckle noise 
removal. The time complexity for our NAWT is the same as conventional wavelet 
thresholding. To perform NAWT, we estimate the noise variance in different wavelet sub-
bands in advance from a structureless reference image. A threshold is calculated accordingly 
for each sub-band to reduce speckle noise. Therefore, the major difference between NAWT 
and conventional wavelet thresholding is the approach for the calculation of noise variance, 
while the computation procedures for speckle noise removal remain the same. 
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